
Continual Coordination of Shared Activities

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91 109-8099
{bclement, barrett} @aig.jpl.nasa.gov

Abstract
Interacting agents that interleave planning and execu-
tion must reach consensus on their commitments to
each other. For domains with varying degrees of in-
teraction and different constraints on communication
and computation, agents will require different coordina-
tion protocols in order to efficiently achieve their goals.
ShAC (Shared Activity Coordination) is a framework
for designing coordination protocols and an algorithm
for continually coordinating agents using these proto-
cols during execution. We show how a variety of pro-
tocols can be constructed using this framework and de-
scribe how ShAC coordinates two rovers and an orbiter
in a simulated Mars scenario.

Introduction
Agents based on behavioral systems or social laws (Shoham
& Tennenholtz 1992) can make short-sighted coordination
decisions, leading to irreversible effects that prevent agents
from reaching their longer-term goals. Planning is com-
monly used to project and resolve conflicts with future ac-
tivities. When interleaving planning and execution, an agent
must be able to adjust its planned activities as it gathers in-
formation about the environment and encounters unexpected
events. Interacting agents must coordinate these adjustments
in the context of commitments with each other. The work
presented here addresses how these agents can interleave
coordination and execution. The ultimate goal of this re-
search is to enable interacting agents to autonomously ad-
just their coordination protocols with respect to unexpected
events and changes in constraints on communication and
computation so that the agents can most efficiently achieve
their goals. This paper presents a framework for designing
coordination protocols and an algorithm for continually co-
ordinating agents using these protocols during execution.

Our approach, called Shared Activity Coordination
(ShAC), provides a general algorithm for interleaving plan-
ning and the exchange of plan information as shared activ-
ities. Agents coordinate their plans by establishing consen-
sus on the parameters of shared activities. Figure 1 displays
this consensus on parameters as equals constraints between
agents’ local views of the shared activity. The vertical box
over each planner’s schedule represents a commit window
that moves along with the current time. Activities in this
window must be passed on to the execution system, which
sends state updates to the planner. Consensus must be es-

Figure 1: Activities shared among continual planners

tablished for shared activities before this window to avoid
violated commitments between agents. Consensus is hard to
establish if all agents sharing an activity modify its param-
eters at the same time. Thus, agents participate in different
coordination roles that specify which agent has control of
the activity.

ShAC’s ability to continually coordinate depends on in-
terleaved planning and execution. As a result, the planner
must be able to respond to execution failures and state up-
dates from the execution system. Our implementation inter-
faces with one such continual planning system, CASPER
(Continuous Activity Scheduling Planning Execution and
Replanning) (Chien et al. 2000). Instead of batch-planning
in episodes, CASPER continually adapts near and long-
term activities while re-projecting state and resource profiles
based on updates from the execution system.

First we describe the shared activity model, the ShAC al-
gorithm, and its interface to the planner. Then we specify
some generic roles and protocols using the ShAC framework
that build on prior coordination mechanisms. These mech-
anisms include a mapping of distributed constraint satisfac-
tion and argumentation approaches to distributed planning.
Then we describe how our current implementation of ShAC
is used to coordinate the communication of two rovers and
an orbiter in a simulated Mars scenario. We follow with
future research needs revealed in this scenario and compar-
isons to related work.

ShAC
ShAC is implemented as a module that commands the plan-
ner of each agent and handles communication with other
agents. ShAC keeps track of shared activities and constraints
on these activities.

mailto:aig.jpl.nasa.gov

Shared Activities
Consider an example of a shared communication activity.
One agent serves the role of a sender and another the role of
a receiver. Shared parameters could specify the start time,
duration, transfer rate, and data size of the activity. The
data size is depleted from the sender’s memory resource but
added to the receiver’s memory. The agents could have sep-
arate power usages for transmitting and receiving. Planning
decisions affect shared activities by altering the values of pa-
rameters. For example, a planner can reschedule an activity
by changing its start-time parameter.

A shared activity is a tuple (ident i f ier , parameters,
agentroles, protocols, decomposition). The parameters
are the shared variables and current values over which the
agents must reach consensus. Our implementation defines
boolean, integer, floating point, and string types. Agent
roles are the local activities assigned to each agent that cor-
respond to the shared activity. These roles can have differ-
ent conditions and effects as specified by the local planning
model. The shared parameters map to local parameters in
the role activity. Protocols are the mechanisms assigned to
each agent that allow them to

change constraints on the shared activity,
change the set of agents assigned to the activity,
communicate changes to the activity and its constraints to

handle constraints received from other agents, and
change roles and protocols for each agent.

Multiple protocols can be defined for a shared activity to
combine their capabilities. Constraints will be described in
the next section, and a variety of protocols will be defined in
the Protocols section.

The decomposition is the set of subactivities in the de-
composition of the agent’s local role activity that all agents
share. This is needed to establish consensus on shared sub-
activity choices that may be selected or eliminated from the
set of subactivities.

Constraints
Constraints are created by agents’ protocols to restrict sets
of values for parameters (parameter constraint) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraint). These constraints restrict the privileges
(or responsibilities) of agents in making coordinated plan-
ning decisions. By communicating constraints, protocols
can come to agreement on the scheduling of an activity with-
out sharing all details of their local plans. By only permitting
one agent to have planning capabilities at a time, a protocol
can avoid thrashing among agents that try to resolve shared
activity conflicts in different ways.

A parameter constraint is a tuple (agent, parameter,
value set). The agent denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the asyn-
chronous weak commitment algorithm prioritizes agents so
that lower-priority agents only conform to higher-priority
agent constraints (Yokoo & Hirayama 1998). Agents can
add to their constraints on a parameter, replace constraints,

other agents,

or cancel them. A string parameter constraint, for exam-
ple, can restrict a parameter to a specific set of strings. An
integer or floating point variable constraint is a set of dis-
joint ranges of numbers. As mentioned before, scheduling
constraints can be represented as constraints on a start time
integer parameter.’

Permissions constraints determine how an agent’s planner
is allowed to manipulate shared activities. The following
permissions are currently defined for ShAC:

parameters - change parameter values
- move - set start time
- duration - change duration of task
- delete - remove from plan
- choose decomposition - select shared subactivity of an

or activity
add - add to plan2
constrain - send constraints to other agents
Parameter permissions can be specified for each param-

eter separately. The permissions categorized under the pa-
rameters permission are potentially special parameters that
all activities have. A protocol can change permissions of
shared activities for any agent during coordination.

Coordination Algorithm
Figure gives a general specification of the ShAC algorithm.
ShAC is implemented separate from the planner, so steps 1
through 4 are handled by the planner through an interface
to ShAC. Step 5 invokes the protocols that potentially make
changes to refocus coordination on resolving shared activity
conflicts and improving plan utility. Shared activity changes
and permission constraints are automatically sent to sharing
agents, and the protocol determines which parameter con-
straints are sent in step 6. Likewise in step 7, shared activ-
ity and permission constraint changes are automatically up-
dated from other agents, and the protocol handles changes
in parameter constraints.

Note that on each pass of this loop, there may be no con-
flicts to warrant altering the plan, no state updates to revise
the projection, no activities to release, or no messages or
other ShAC information to act upon. This algorithm could
be interpreted to run all steps in parallel with each other.
Each separate parallel step could be looping at a different
rate, either naturally or as configured. The best way to con-
figure this will depend on the domain and the agents’ sensing
and computation capabilities. Although a domain designer
can make guesses and experiment through simulation, future
work is needed to understand how this configuration should
be done.

Ignoring coordination, a continuous planner must deter-
mine when it is appropriate to release activities to the exe-
cution system. In some cases, an activity involved in a con-
flict may either be released (requiring the planner to recover

‘This is an influence of interfacing ShAC to the CASPER plan-
ning system, which grounds the timing of all activities (Chien er
al. 2000). ShAC would need a new representation to handle partial
order constraints on activities.

‘This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a particu-
lar class).

Given: a plan with multiple activities, a projection of
plan into the future, and a set of sharedadiui t ies with
constraints.

1. Revise projection using the currently perceived state

2. Alter plan and projection according to constraints.

3. Release relevant near-term activities of plan to the
real-time execution system.

4. Detect sharedactiuities failed to schedule in plan,
and generate parameter constraints representing
consistent value sets.

5. For each shared activity in sharedactivities, apply
each associated protocol to modify the shared activity
and constraints.

6. Communicate changes in sharedactivities and
constraints.

7. Update sharedactivities and constraints based on
received communications.

8. Go to 1.

and any newly added goal activities.

Figure 2: Shared activity coordination algorithm

from potential failures) or postponed (to allow the planner
to recover before a failure occurs). CASPER keeps a com-
mit window (an interval between the current time and some
point in the near future) within which activities cannot be
modified and passes these activities to the execution system.

This interaction with the execution system becomes more
complicated when agents share tasks. ShAC must make sure
that any shared activity is released by all agents with consen-
sus on the start time and other parameters of the task. Ide-
ally the agents should establish consensus before the commit
window. If they cannot, then there should be a simple pro-
tocol that allows them to quickly establish consensus (e.g.
use the task information of the highest priority agent sharing
the task and having modlfication permissions), and the task
must be modified within the commit window. ShAC avoids
changes in the commit window by keeping a consensus win-
dow that extends from the commit window forward by some
period specific for the activity. As time moves forward, the
consensus window extends forward. When a shared activity
moves into the window, the agents switch to the simple con-
sensus protocol to try and reach consensus before moving
into the commit window.

ShAC requires several capabilities from the planning sys-
tem to which it interfaces. If the system is not a continual
planner, and coordination is to be done in batch before exe-
cution, then steps 1 and 3 are not necessary in the algorithm
description. In this case, ShAC requires the following capa-
bilities of the planner:

grounds start times and durations of activities3,
0 add new activities received from other planners,
0 update parameters of activities changed by otherplanners,

'This is because ShAC has not yet been extended to handle flex-
ible or partial order time constraints.

0 enforce constraints during planning, and
0 detect activities it failed to schedule and generate the cor-

responding parameter constraints.
For continual coordination during execution, the planner

must additionally be able to
integrate state updates from the execution system,
project changes in the current plan, and

0 issue near-term activities to the execution system.
Probably the most stringent requirement is that the plan-

ner be able to alter its plan based on state updates and shared
activities that other agents modify. Being able to handle
unexpected events, however, is a necessary property for in-
terleaving planning and execution. Iterative repair planners
focus on this capability and make good candidates for this
coordination architecture. CASPER is one such planner and
provides all of the capabilities we list above (Chien et al.
2000).

Protocols
In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (of the previous section), the protocol determines
what to communicate and how to process communication
as described in the algorithm and the Shared Activities sec-
tion. A protocol must specify the following procedures to
be called during steps 5, 6, and 7 of the ShAC coordination
algorithm for the activity to which it is assigned:
1. modify permissions of the sharing agents (ShAC step 5)
2. adadelete agents sharing the activity (ShAC step 5)
3. change roleslprotocols for each agent (ShAC step 5)
4. send some subset of parameter constraints to each sharing

agent (ShAC step 6)
5. process constraints received from other agents (ShAC step

7)
We will define protocols according to these five methods.

If a protocol does nothing for all of these procedures, the
ShAC algorithm still has several capabilities. An initial as-
signment of agents and their permissions to shared activities
can provide the following capabilities. A domain modeler
uses a language for defining shared activities to specify these
initial assignments to provide a mix of capabilities resulting
in basic protocols upon which others can be built.4
joint intention A shared activity by itself represents a joint

intention among the agents that share it.
mutual belief Parameters or state assertions of shared ac-

tivities can be updated by sharing agents to establish con-
sensus over shared information.

resource sharing Sharing agents can have identical condi-
tions and effects on shared states or resources.

activdpassive Some sharing agents can have active roles
with execution primitives while others have passive roles
without execution primitives.
4The modeling language is outside the scope of this paper but

is inspired by team-oriented programming for STEAM (Pynadath
er al. 1999; Tambe 1997).

mastedslave A master agent can have permission to sched-
ule/modify an activity that a slave[s] (which has no per-
missions) must plan around.
The following sections describe protocols that build on

the above capabilities by implementing one or more of the
five protocol methods.

Argumentation
Argumentation is a technique for negotiating joint beliefs or
intentions (Kraus, Sycara, & Evanchik 1998). Commonly,
one agent makes a proposal to others with justifications. The
others evaluate the argument and either accept it or counter-
propose with added justifications. This technique has been
applied to teamwork negotiation research to form teams, re-
organize teams, and resolve conflicts over members’ beliefs
(Tambe & Jung 1999). This technique can be used in coor-
dinated planning to establish consensus on shared activities.

A shared activity and associated parameter values are the
proposal or counterproposal. Justifications can be given as
parameter constraints (not necessarily on the same parame-
ters proposed). Line 4 of the coordination algorithm deter-
mines whether the enforced constraints of other agents are
feasible and generates potential constraints for counterpro-
posals. Protocol method 4 must be implemented to initiate
counterproposals with constraint justifications. What con-
straints are generated is domain dependent since the argu-
ment for a proposal is domain dependent. Protocol method
5 must also be implemented to evaluate the constraints and
enforce them in the planner. An evaluation may accept the
proposal, enforce the constraints, or reject the proposal by
signalling protocol method 4 to counterpropose without re-
planning.

As an example, one agent can propose an activity with
a particular start time and add justifications in the form of
all intervals within which the shared activity can be sched-
uled. Other agents can replan to accomodate the proposal
and counterpropose with their own interval restrictions if re-
planning is unsuccessful. If the agents cannot establish con-
sensus before the consensus window, a higher ranking agent
can select a time that benefits most of the agents. Of course,
there are many variations on just this example. Agents may
be restricted because they are slaves or do not have con-
straint permissions to counterpropose.

Delegation
Delegation is a mechanism where an agent in a passive dele-
gator role assigns and reassigns activities to different subsets
of agents in active subordinate roles. The delegator’s proto-
col only needs to implement protocol method 2 to choose
the subordinates that will perform the task. This protocol
can be simply varied by giving agents different master or
slave roles.

Asynchronous Weak-Commitment
Multi-asynchronous weak commitment is a distributed con-
straint satisfaction algorithm that enables agents, each with
a set of variables, to satisfy constraints between variables
across and within agents (Yokoo & Hirayama 1998). Agents
are prioritized, and their variables each initially have a zero
priority. The values of lower priority variables are modified
to satisfy constraints with values chosen for higher priority

variables (with agent priorities as a tie breaker). If there is no
value that satisfies the constraints, then the goveming agent
selects a value that minimizes violations with lower priority
variables and raises the priority of the variable to the highest
priority of the variables with which it has constraints plus
one, making the variable the highest ranking with its neigh-
bors. The failing agent also sends a no-good to its neighbors,
communicating the values of the subset of variables making
the variable unassignable.

This protocol can be adapted for planning agents. The
variables are shared activity parameters. The constraints
are equals relations among agents sharing the activities. A
agent’s protocol must keep track of a priority of the shared
activity and those of the other sharing agents (as well as the
agents’ priorities). These priorities can be parameters of the
shared activity. A no-good message is a set of parameter
constraints generated by step 4 of the coordination algo-
rithm. The agent’s protocol implements method 1 to give
itself permission to modify the shared activity only if there
are other sharing agents with a higher rank for the activity.
Protocol method 5 enforces only the parameter constraints
from agents with higher ranks for the activity. Whenever
parameter constraints are generated by the planner because
conflicts caused by the activity cannot be resolved, the prot-
col updates the priority of the activity to one greater than
that of the other agents, and sends the priority update and
parameter constraints (as no-goods) to the sharing agents in
protocol method 4.

Constraint-Based Conflict Resolution
For this protocol, the agents initially have no permissions
to modify a proposed shared activity. They broadcast any
parameter constraints to the sharing agents as the planner
schedules local activities around the shared activity while
trying to meet others’ constraints as possible. After some
time period, or once the agents have converged on a set of
constraints (not guaranteed), the agents switch to another
protocol potentially reinstating permissions and negotiate fi-
nal parameter values or delete the activity. Protocol method
3 must be implemented to switch protocols.

Round-Robin
A round-robin approach to establishing consensus on a
shared activity involves rotating a master role by changing
permission Constraints. Only one agent may modify the ac-
tivity at a time and once finished, the agent can tum off its
own permissions and turn them on for another agent (while
sending out the update). Only protocol method 1 need be
implemented to switch permissions-role switching is not
necessary.

Centralized Conflict Delegator
Here, a single agent served in a passive delegator role for a
set of shared activities. The delegator models all shared re-
sources and, thus, keeps track of all conflicts for a group
of active Subordinates. Subordinates do not share activi-
ties with each other. This boss delegates conflicts to differ-
ent agents by delegating tasks involved in conflicts to dif-
ferent subordinates and also sending the subordinates the
corresponding parameter constraints it generates indirectly
from the activities it shares with other subordinates. Proto-
col method 2 is implemented to ensure that agents are not

modifying the same activities or working on the same con-
flicts in order to avoid race conditions. Optionally, a sub-
ordinate can report its own conflicts when it fails to resolve
conflicts, and the delegator will re-delegate the conflict by
reassigning subordinates to activities using method 2.

Application to Mars Scenario
Now we describe how ShAC is applied to a simulated sce-
nario involving two Mars Exploration Rovers (MERs) and
a Mars Odyssey orbiter. Different masterlslave and ac-
tivelpassive roles are defined using permission constraints
for the shared activities to implement a basic protocol for co-
ordinating communication to and from Earth. We will apply
some of the previously defined, more sophisticated protocols
to thls domain in our future work.

The MERs (MER A and MER B) and Odyssey can com-
municate with Earth directly, but the MERs can option-
ally route data through Odyssey, which communicates with
Earth at a higher bandwidth. The rovers need daily commu-
nication with ground operations to receive new goals. The
rovers will often fail to traverse to a new target location and
cannot proceed until new instructions come from ground op-
erations. In this scenario both MERs must negotiate with
Odyssey to determine how to most quickly get a response
from ground after sending an image of the surrounding area.

Each MER has a communication state shared with
Odyssey that tracks when the image is generated, when it
gets to Earth, and when the response from ground opera-
tions arrives to the rover. Shared activities for changing the
state are shown for different routing options in Figure 3. The
rover's activity for generating an image from its panoramic
camera changes the state to request to communicate its
need to downlink and receive an uplink. Activities for send-
ing the image to Earth (either directly or through Odyssey),
change the state to a wait for uplink state to indicate
that the rover will then be waiting for the uplink. Ground op-
erations needs a period of time to generate new commands
for the uplink, so if the uplink is received by Odyssey, the
state changes to received to indicate that now the rover
can get the uplink from Odyssey. Once the rover receives
the uplink, the state changes back to the normal no pend-
ing request state. Rover tasks (such as a traverse) need
the uplinked data before executing, so it places a local con-
straint that shared state be no pending request dur-
ing its scheduled interval. There are no shared resources
although communication requests from a MER have effects
on many local resources of both the MER and Odyssey. All
of the shared activities have active master and passive slave
roles. MER and Odyssey both take the master role for activ-
ities labeled for them in Figure 3.

CASPER planners for each of the MERs and Odyssey
first build their three-day plans separately to optimize sci-
ence data retum, resolving any local constraints on memory,
power, battery energy, etc. The three-day schedules consti-
tute over 600 tasks for each MER and over 1400 for Odyssey
with 30 statelresource variables for each MER and 22 for
Odyssey.

When coordination begins, the planners send their com-
munication requests to the other planners. Before these up-
dates are received, the initial views of the shared uplink sta-
tus are shown in Figure 4. The MERs begin with conflicts
with their traverse tasks because the uplink has not yet been

througl
Odysse

MERactivities -
Odyssey activities i---4

downlink critical data I uplink from Earth
critical comm eo" , wmm wmm
pancam odyssey earth I earth odyssey

I r--7 I{
+-- - k-'2Lt.k wait I

I critical wmm I wmm

I

direct

Figure 3: Downlinkluplink states for a rover

MERnctivities - Odyssey activities +---I

H 1 - i k-i I--I H k-4 H
w m esrih

comm earth
I-i I-i I-i ti -4 I--i H

Figure 4: Downlinkhplink shared state for MER A. From
top to bottom, Odyssey's initial view, MER A's initial view,
and the common view after coordination.

received from Earth. The coordination algorithm commands
the planners to repetitively process shared task updates, re-
plan to resolve conflicts by recomputing the shared state and
modifying scientific measurement operations to adjust for
the increased power and memory needs, and send task up-
dates. After a minute and a half, MER A, B, and Odyssey
agree on routing the downlink and uplink through Odyssey
to get the uplinked commands in time for the traversal on
different days5 The resulting shared state is shown at the
bottom of Figure 4. The ASPENS reach consensus that co-
ordination is complete and sleep while waiting for task up-
dates.

Then we triggered an anomaly in MER A's plan causing
it to cancel its first day's tasks and shift the entire sched-
ule forward a day. Before sending the updated shared tasks,
replanning was issued to resolve local constraints to avoid
propagating inconsistent state information to Odyssey. All
conflicts were resolved in a few seconds except the traverse

50dyssey's planner ran on a SuaBlade 1000, and the MERs ran
on a Sparc Ultra 60 and 80.

conflicts with a w a i t state. Then MER A sends a task up-
date to restart coordination. Coordination completes in less
than a minute with data again being routed through Odyssey.

While we have only experimented with simple protocols,
this application of ShAC to the Mars scenario shows how
planners can coordinate during execution while making min-
imal concessions to ideal plans and responding to unex-
pected events. In the next section, we discuss how ShAC
builds on related work and discuss new research challenges
for decentralized, coordinated planning.

Discussion and Related Work
Conflicts among a group of agents can be avoided by re-
ducing or eliminating interactions by localizing plan effects
to particular agents (Lansky 1990), and by merging the in-
dividual plans of agents by introducing synchronization ac-
tions (Georgeff 1983). In fact, planning and merging can
be interleaved (Ephrati & Rosenschein 1994). Earlier work
studied interleaved planning and merging and decomposi-
tion in a distributed version of the NOAH planner (Corkill
1979) that focused on distributed problem solving. More
recent research builds on these techniques by formalizing
and reasoning about the plans of multiple agents at multi-
ple levels of abstraction to localize interactions and prune
unfruitful spaces during the search for coordinated global
plans (Clement & Durfee 2000). While this is a central-
ized approach, work is needed to apply these techniques that
leverage abstraction in a decentralized framework to reduce
communication and computation during coordination. Ab-
stract plan information can even automate the discovery of
agent relationships that our approach pushes off on the do-
main modeler.

DSIPE (desJardins & Wolverton 1999) employs a central-
ized plan merging strategy for distributed planners for col-
laborative problem solving using human decision support.
Like our approach, local and global views of planning prob-
lem help the planners coordinate the elaboration and repair
of their plans. DSIPE provides insight into human involve-
ment in the planning process as well as automatic informa-
tion .filtering for isolating necessary information to share.
While our approach relies on the domain modeler to spec-
ify up front what information will be shared, ShAC supports
a fully decentralized framework and focuses on interleaved
coordination and execution.

In many ways t h s work is following the Generalized Par-
tial Global Planning approach to using a mix of coordina-
tion protocols tailored for the domain (Decker 1995). ShAC
offers an altemative framework for separating implementa-
tion of these mechanisms from the planning algorithms em-
ployed by specific agents. Unlike GPGP, ShAC provides a
modular framework for combining lower-level mechanisms
to create higher-level roles and protocols. Our future work
will build on GPGP’s evaluations of mechanism variations to
better understand how agents should coordinate for classes
of domains varying in agent interaction, communication
constraints, and computation limitations.

Grosz’s shared plans model of collaboration presents a
theory for modeling multiagent belief and intention (Grosz
& Kraus 1996). ShAC’s model and manipulation of shared
activities provides basic mechanisms for agents to commu-
nicate and establish beliefs, intentions, and goals for itself
or a group. Using ShAC to reason about the mental states

of agents, the shared plans model and work based on BDI
(belief-intention-desire) models of agents (Rao & Georgeff
1995) can be exploited in ShAC.

Finally, TEAMCORE provides a robust framework for
developing and executing team plans (Tambe 1997; Pyna-
dath et al. 1999). This work also offers a decision-theoretic
approach to reducing communication within a collaborative
framework. Research is needed to investigate the integration
of coordinated planning with robust coordinated execution.

An assumption commonly made in multiagent research is
that agents will be able to communicate at all times reliably.
In the Mars scenario, the spacecraft communicate with each
other in varying time windows and frequencies, and the two
MERs can never directly talk to each other. Establishing
consensus on beliefs and intentions is impossible without
certain communication guarantees (Mullender 1995). Un-
derstanding the communication pattems that make consen-
sus possible and the overhead for establishing consensus is
critical for multiagent research.

Conclusion
We have introduced shared activity coordination as an ap-
proach to designing role-based coordination mechanisms.
ShAC provides several coordination capabilities upon which
we have specified several higher-level coordination proto-
cols, including a mapping of a distributed constraint satis-
faction algorithm into distributed planning. We have also de-
scribed an algorithm for continually coordinating planning
agents during execution using these protocols. While our
future work is aimed at evaluating the benefits of these pro-
tocols for different classes of multiagent domains, we vali-
date our approach in coordinating three simulated spacecraft
in the presence of an unexpected event.

Acknowledgments
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References
Chien, S.; Knight, R.; Stechert, A.; Shenvood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. ECP,
300-307.
Clement, B., and Durfee, E. 2000. Performance of coordi-
nating concurrent hierarchical planning agents using sum-
mary information. In Proc. ATAL, 202-216.
Corkill, D. 1979. Heirarchical planning in a distributed
environment. In Proc. ZJCAZ, 168-175.
Decker, K. 1995. Environment centered analysis and de-
sign of coordination mechanisms. Ph.D. Dissertation, Uni-
versity of Massachusetts.
desJardins, M., and Wolverton, M. 1999. Coordinating a
distributed planning system. AI Magazine 20(4):45-53.
Ephrati, E., and Rosenschein, J. 1994. Divide and conquer
in multi-agent planning. In Pmc. AAAZ, 375-380.
Georgeff, M. P. 1983. Communication and interaction in
multiagent planning. In Proc. AAAZ, 125-129.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artijicial Intelligence 86:269-358.
Kraus, S.; Sycara, K.; and Evanchik, A. 1998. Reaching
agreements through argumentation: a logical model and
implementation. Artijicial Intelligence 104: 1-70.
Lansky, A. 1990. Localized search for controlling auto-
mated reasoning. In Proc. DARPA Workshop on Innov. Ap-
proaches to Planning, Scheduling and Control, 115-125.
Mullender, S. 1995. Distributed Systems. Addison-Wesley
New York.
Pynadath, D.; Tambe, M.; Cauvat, N.; and Cavedon, L.
1999. Toward team-oriented programming. In Proc. ATAL.
Rao, A. S., and Georgeff, M. P. 1995. BDI-agents: from
theory to practice. In Proceedings of the First Intl. Confer-
ence on Multiagent Systems.
Shoham, Y., and Tennenholtz, M. 1992. On the synthesis
of useful social laws for artificial societies. In Proc. M I .
Tambe, M., and Jung, H. 1999. The benefits of arguing in
a team. AI Magazine 20(4).
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artijicial Intelligence Research 7:83-124.
Yokoo, M., and Hirayama, K. 1998. The distributed con-
straint satisfaction problem: formalization and algorithms.
IEEE Trans. on KDE 10(5):673-685.

